[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
[an error occurred while processing this directive]
Monash University

FIT3088 Computer graphics - Semester 1, 2012

Computer graphics is concerned with the creation of synthetic images and virtual worlds. This unit introduces the essential algorithms, theory and programming concepts necessary to generate interactive 2D and 3D graphics. Students will gain practical experience using the industry standard OpenGL API to develop their own interactive graphics applications. The topics covered form the basis of core knowledge necessary for developing applications in scientific visualisation, virtual reality, visual special effects and computer games.

Mode of Delivery

Clayton (Day)

Contact Hours

2 hrs lectures/wk, 2 hrs laboratories/fortnight

Workload

For on campus students, workload commitments are:

  • two-hours of lectures each week, and
  • two-hour laboratory class each fortnight
  • a minimum of 4-5 hours of personal study per one hour of contact time in order to satisfy the reading and assignment expectations.
  • You will need to allocate up to 5 hours per week in some weeks, for use of a computer and assignment work.

Unit Relationships

Prohibitions

CSE3313, DGS3622, FIT3005, GCO3817

Prerequisites

FIT2004 or CSE2304

Chief Examiner

Campus Lecturer

Clayton

Peter Tischer

Academic Overview

Outcomes

At the completion of this unit students will have -
A knowledge and understanding of:
  • mathematical representations of basic geometric primitives in Euclidean space, such as points, lines, polygons and parametric curves;
  • how to use homogeneous co-ordinates and transformations on geometric objects in two and three dimensions.
  • how to combine multiple transformations efficiently;
  • orthographic, parallel and perspective projections and their related homogeneous transformations;
  • appropriate data structures for hierarchical representation of polygonal datasets;
  • rasterisation algorithms for drawing in frame buffers;
  • the use of Quaternions to represent object rotation;
  • a synthetic camera model for viewing and projecting of two and three-dimensional geometry;
  • algorithms for hidden surface removal and backface elimination. The capacity to analyse the space and time complexity of these algorithms to determine the most appropriate in a given situation;
  • BRDF Shading models such as Lambert, Phong, Blinns Phong, Torrance-Sparrow-Blinn-Cook-Beckmann, Oren-Nayar;
  • textures and texture mapping;
  • basic knowledge of aliasing theory;
  • interpolative shading models. Shadow algorithms. Local and global illumination models;
  • the OpenGL state-machine, GPUs and graphics pipline.

Developed attitudes that enable them to:
  • understand the role and value of visual communication in the arts and sciences;
  • appreciate the uses and application of interactive, real-time graphics and software rendering.

Developed the skills to:
  • program basic interactive graphics applications in OpenGL;
  • apply computer graphics theory and algorithms to the design of visual computing applications.

Graduate Attributes

Monash prepares its graduates to be:
  1. responsible and effective global citizens who:
    1. engage in an internationalised world
    2. exhibit cross-cultural competence
    3. demonstrate ethical values
  2. critical and creative scholars who:
    1. produce innovative solutions to problems
    2. apply research skills to a range of challenges
    3. communicate perceptively and effectively

Assessment Summary

Examination (3 hours): 70%; In-semester assessment: 30%

Assessment Task Value Due Date
Assignment 1: 2D Graphics 10% Week 7, Monday 16 April 2012
Assignment 2: 3D Graphics 20% Week 12, Friday 25 May 2012
Examination 1 70% To be advised

Teaching Approach

Lecture and tutorials or problem classes
This teaching and learning approach provides facilitated learning, practical exploration and peer learning.

Feedback

Our feedback to You

Types of feedback you can expect to receive in this unit are:
  • Informal feedback on progress in labs/tutes
  • Graded assignments with comments

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through SETU, Student Evaluation of Teacher and Unit. The University's student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash's educational strategy, and on student evaluations, see:
http://www.monash.edu.au/about/monash-directions/directions.html
http://www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html

Previous Student Evaluations of this unit

A Monquest evaluation will be run for this unit.

If you wish to view how previous students rated this unit, please go to
https://emuapps.monash.edu.au/unitevaluations/index.jsp

Required Resources

Please check with your lecturer before purchasing any Required Resources. Prescribed texts are available for you to borrow in the library, and prescribed software is available in student labs.

Processing: available at <http://www.processing.org>

Jogl (Java OpenGL) available from <http://java.net>

The Java Development Kit (JDK) available from <http://www.java.com>

Any machine with OpenGL or MESA installed (see: <http://www.opengl.org>).

Unit Schedule

Week Activities Assessment
0 Orientation week: No formal assessment or activities are undertaken No formal assessment or activities are undertaken in week 0
1 Course Overview, Introduction, History  
2 Displays, 2D Graphics with Processing  
3 2D Transforms, Homogeneous Transforms  
4 OpenGL I, OpenGL II  
5 OpenGL III, 3D Graphics Introduction  
6 3D Transforms, Compound Transforms  
7 Perspective, OpenGL Viewing Assignment 1 due Week 7, Monday 16 April 2012
8 3D Viewing, Hidden Surface Removal I  
9 Hidden Surface Removal II, Lighting  
10 Texturing, OpenGL Compositing/Animation  
11 Phong Shading, Global Illumination  
12 Developments in CG Research, Exam Revision Assignment 2 due Week 12, Friday 25 May 2012
  SWOT VAC No formal assessment is undertaken in SWOT VAC
  Examination period LINK to Assessment Policy: http://policy.monash.edu.au/policy-bank/
academic/education/assessment/
assessment-in-coursework-policy.html

*Unit Schedule details will be maintained and communicated to you via your MUSO (Blackboard or Moodle) learning system.

Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles (http://www.infotech.monash.edu.au/resources/staff/edgov/policies/assessment-examinations/unit-assessment-hurdles.html)

Assessment Tasks

Participation

  • Assessment task 1
    Title:
    Assignment 1: 2D Graphics
    Description:
    Programming assignment 1: 2D graphics with Processing
    Weighting:
    10%
    Criteria for assessment:
    Adherence to the specification; quality of programming: robustness, efficiency, correctness; correct implementation of required and optional features; adequate documentation; Creativity and innovation of solution; Quality of graphics code.
    Due date:
    Week 7, Monday 16 April 2012
  • Assessment task 2
    Title:
    Assignment 2: 3D Graphics
    Description:
    Programming assignment 2: 3D graphics with OpenGL
    Weighting:
    20%
    Criteria for assessment:

    Adherence to the specification; quality of programming: robustness, efficiency, correctness; correct implementation of required and optional features; adequate documentation; Creativity and innovation of solution; Quality of graphics code.

    Due date:
    Week 12, Friday 25 May 2012

Examinations

  • Examination 1
    Weighting:
    70%
    Length:
    3 hours
    Type (open/closed book):
    Closed book
    Electronic devices allowed in the exam:
    None

Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/plagiarism-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an online quiz).

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the VLE site for this unit, which you can access via links in the my.monash portal.

Extensions and penalties

Returning assignments

Other Information

Policies

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at www.monash.edu.au/students. For Sunway see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/

The Monash University Library provides a range of services and resources that enable you to save time and be more effective in your learning and research. Go to http://www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Sunway, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/.

Academic support services may be available for students who have a disability or medical condition. Registration with the Disability Liaison Unit is required. Further information is available as follows:

  • Website: http://monash.edu/equity-diversity/disability/index.html;
  • Email: dlu@monash.edu
  • Drop In: Equity and Diversity Centre, Level 1 Gallery Building (Building 55), Monash University, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Sunway Campus
  • Telephone: 03 9905 5704, or contact the Student Advisor, Student Commuity Services at 03 55146018 at Sunway

Other

Highly Recommended

Slater, Mel et. al.: Computer Graphics and Virtual Environments: from realism to real-time, Addison Wesley, 2002.

Hearn, Donald and M. Pauline Baker: Computer Graphics with OpenGL (3rd International Edition), Pearson Prentice Hall, 2004

Angel, Edward: OpenGL: A Primer, (2nd Edition) Addison Wesley, 2004.

Supplementary Reading

Van Verth, James M. and Lars M. Bishop: Essential Mathematics for Games and Interactive Applications, A Programmers Guide, Morgan Kaufmann, 2004.

Shreiner, D. et. al.: OpenGL Programming Guide (5th Edition), The Official Guide to Learning OpenGL, Version , Addison Wesley 2006.

Angel, Edward: Interactive Computer Graphics: A top-down approach using OpenGL (Third Edition), Addison Wesley, 2003.

Hill, F.S. Jr.: Computer Graphics Using Open GL (2nd Edition), Prentice-Hall, 2001.

[an error occurred while processing this directive]