[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
[an error occurred while processing this directive]
Monash University

FIT3088 Computer graphics - Semester 2, 2015

Computer graphics is concerned with the creation of synthetic images and virtual worlds. This unit introduces the essential algorithms, theory and programming concepts necessary to generate interactive 2D and 3D graphics. Students will gain practical experience using the industry standard OpenGL API to develop their own interactive graphics applications. The topics covered form the basis of core knowledge necessary for developing applications in scientific visualisation, virtual reality, visual special effects and computer games.

Mode of Delivery

Clayton (Day)

Workload Requirements

Minimum total expected workload equals 12 hours per week comprising:

(a.) Contact hours for on-campus students:

  • Two hours of lectures
  • One 2-hour laboratory

(b.) Additional requirements (all students):

  • A minimum of 2-3 hours of personal study per one hour of contact time in order to satisfy the reading and assignment expectations.

See also Unit timetable information

Additional workload requirements

You will need to allocate up to 5 hours per week in some weeks, for use of a computer and assignment work.

Unit Relationships

Prohibitions

CSE3313, DGS3622, FIT3005, GCO3817

Prerequisites

FIT2004 or CSE2304

Chief Examiner

Campus Lecturer

Clayton

Peter Tischer

Tutors

Clayton

To be advised

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through the Student Evaluation of Teaching and Units (SETU) survey. The University’s student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash’s educational strategy, see:

www.monash.edu.au/about/monash-directions/ and on student evaluations, see: www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html

Previous Student Evaluations of this Unit

Based on previous student feedback this unit is well structured and no changes have been made for this semester.

If you wish to view how previous students rated this unit, please go to
https://emuapps.monash.edu.au/unitevaluations/index.jsp

Academic Overview

Learning Outcomes

At the completion of this unit, students should be able to:
  1. demonstrate the mathematical foundations for modelling 2D and 3D primitives such as points, lines, polygons and polyhedral, and explain how these primitives can be transformed using affine transformations;
  2. compose and apply basic graphics transformations using homogeneous coordinates;
  3. explain how a 2D view of a 3D scene can be produced using hidden surface elimination algorithms and parallel and perspective projections;
  4. describe techniques for producing realistic depictions of scenes using techniques like textures and texture mapping, shadows and BRDF shading models such as Lambert, Phong, Blinns Phong, Torrance-Sparrow-Blinn-Cook-Beckmann, Oren-Nayar, radiosity and ray-tracing;
  5. decompose the problem of producing graphics output into modelling and rendering components and apply this decomposition to produce well-structured graphics programs;
  6. write simple programs using graphics software based on standards like OpenGL for producing 2D and 3D scenes.

Unit Schedule

Week Activities Assessment
0 Orientation week: No formal assessment or activities are undertaken No formal assessment or activities are undertaken in week 0
1 Course Overview, Introduction, History  
2 Displays, 2D Graphics with Processing  
3 2D Transforms, Homogeneous Transforms  
4 OpenGL I, OpenGL II  
5 OpenGL III, 3D Graphics Introduction  
6 3D Transforms, Compound Transforms  
7 Perspective, OpenGL Viewing Assignment 1 due Week 7, Monday 7 September 2015
8 3D Viewing, Hidden Surface Removal I  
9 Hidden Surface Removal II, Lighting  
10 Texturing, OpenGL Compositing/Animation  
11 Phong Shading, Global Illumination  
12 Developments in CG Research, Exam Revision Assignment 2 due Week 12, Monday 19 October 2015
  SWOT VAC No formal assessment is undertaken in SWOT VAC
  Examination period LINK to Assessment Policy: http://policy.monash.edu.au/policy-bank/
academic/education/assessment/
assessment-in-coursework-policy.html

*Unit Schedule details will be maintained and communicated to you via your learning system.

Teaching Approach

Lecture and tutorials or problem classes
This teaching and learning approach provides facilitated learning, practical exploration and peer learning.

Assessment Summary

Examination (3 hours): 70%; In-semester assessment: 30%

Assessment Task Value Due Date
Assignment 1: 2D Graphics 10% Week 7, Monday 7 September 2015
Assignment 2: 3D Graphics 20% Week 12, Monday 19 October 2015
Examination 1 70% To be advised

Assessment Requirements

Assessment Policy

Assessment Tasks

Participation

  • Assessment task 1
    Title:
    Assignment 1: 2D Graphics
    Description:
    Assignment 1, students will program using Processing.  The assignment will concentrate on using 2D graphics primitives.
    Weighting:
    10%
    Criteria for assessment:
    Adherence to the specification; quality of programming: robustness, efficiency, correctness; correct implementation of required and optional features; adequate documentation; Creativity and innovation of solution; Quality of graphics code.
    Due date:
    Week 7, Monday 7 September 2015
    Remarks:
    This assessment relates to Learning Outcomes 1, 2, 5 and 6.


  • Assessment task 2
    Title:
    Assignment 2: 3D Graphics
    Description:
    Assignment 2, Students will use 3D primitives as well as 2D primitives and use the Open GL Graphics engine.
    Weighting:
    20%
    Criteria for assessment:

    Adherence to the specification; quality of programming: robustness, efficiency, correctness; correct implementation of required and optional features; adequate documentation; Creativity and innovation of solution; Quality of graphics code.

    Due date:
    Week 12, Monday 19 October 2015
    Remarks:
    This assessment relates to Learning Outcomes 1, 2, 3, 4, 5 and 6.


Examinations

  • Examination 1
    Weighting:
    70%
    Length:
    3 hours
    Type (open/closed book):
    Closed book
    Electronic devices allowed in the exam:
    None

Learning resources

Reading list

Highly Recommended

Angel, Edward and Schreiner, David: Interactive Computer Graphics: A top-down approach with shader-based OpenGL (6th Edition), Addison Wesley, 2012.

Slater, Mel et. al.: Computer Graphics and Virtual Environments: from realism to real-time, Addison Wesley, 2002.

Reas, Casey and Fry Ben: Processing: a programming handbook for visual designers and artists, MIT Press, 2007

Angel, Edward: OpenGL: A Primer, (2nd Edition) Addison Wesley, 2008.

Supplementary Reading

Van Verth, James M. and Lars M. Bishop: Essential Mathematics for Games and Interactive Applications, A Programmers Guide, Morgan Kaufmann, 2004.

Shreiner, D. et. al.: OpenGL Programming Guide (5th Edition), The Official Guide to Learning OpenGL, Version, Addison Wesley 2006.

Hill, F.S. Jr.: Computer Graphics Using Open GL (2nd Edition), Prentice-Hall, 2001.

Monash Library Unit Reading List (if applicable to the unit)
http://readinglists.lib.monash.edu/index.html

Feedback to you

Types of feedback you can expect to receive in this unit are:

  • Informal feedback on progress in labs/tutes
  • Graded assignments with comments

Extensions and penalties

Returning assignments

Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-academic-integrity-managing-plagiarism-collusion-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an electronic submission). Please note that it is your responsibility to retain copies of your assessments.

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the learning system for this unit, which you can access via links in the my.monash portal.

Required Resources

Please check with your lecturer before purchasing any Required Resources. Limited copies of prescribed texts are available for you to borrow in the library, and prescribed software is available in student labs.

Processing: available from <http://www.processing.org>

Jogl (Java OpenGL): available from <http://java.net>

The Java Development Kit (JDK): available from <http://www.java.com>

Any machine with OpenGL or MESA installed (see: <http://www.opengl.org>).

Other Information

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash’s Education Policies at: www.policy.monash.edu.au/policy-bank/academic/education/index.html

Faculty resources and policies

Important student resources including Faculty policies are located at http://intranet.monash.edu.au/infotech/resources/students/

Graduate Attributes Policy

Student Charter

Student services

Monash University Library

Disability Liaison Unit

Students who have a disability or medical condition are welcome to contact the Disability Liaison Unit to discuss academic support services. Disability Liaison Officers (DLOs) visit all Victorian campuses on a regular basis.

[an error occurred while processing this directive]